News Information

Share the latest developments of Jiayuan for you

Location:HomePage > News
Which fluorine chemical products are more promising in the future?
time:2023-11-20 view:251

I believe you have seen and heard many PVDF and lithium hexafluorophosphate projects in recent years. Some are built by fluorine chemical companies, and some are cross-border investments by outside companies. The successive commissioning of these projects has made the supply and demand relationship of PVDF and lithium hexafluorophosphate rapid. Changes have occurred, and its market prices have also fluctuated sharply, and the industry sentiment is very pessimistic.

However, there are a wide variety of fluorine chemical products. In addition to fluorine-containing lithium battery materials, many other products also have excellent application prospects, including hexafluorobutadiene, chlorine trifluoride, carbonyl fluoride, and fluorine-containing polyimide. , polychlorotrifluoroethylene, fusible polytetrafluoroethylene, perfluorosulfonic acid resin, hydrofluoroether, perfluoropolyether, ethylene-tetrafluoroethylene copolymer, etc. This article will take you to learn about some of the more promising fluorine Chemical Products.




01 Hexafluorobutadiene

Hexafluorobutadiene, also known as perfluorobutadiene, hexafluoro-1,3-butadiene, or HFBD for short, is a double-bonded, fully fluorinated compound with a molecular formula of C4F6. Hexafluorobutadiene is an important raw material for synthetic resins and fluorine-containing substances. It can also be used as an etching gas in the semiconductor industry, with the advantages of good selectivity and high precision.


In addition, the GWP of hexafluorobutadiene is only 0.004, and its lifetime in the atmosphere is less than 2 days. It has a very small greenhouse effect. It is a green, environmentally friendly and very marketable perfluoride gas. In recent years, hexafluorobutadiene has become one of the most likely candidates to replace traditional fluorine-containing etching gases due to its excellent etching selectivity, high precision, and easy decomposition in the atmosphere.


Hexafluorobutadiene is one of the new generation of fluorine-containing etching gases currently discovered that can meet the development requirements of etching technology and minimize its impact on the environment. It has broad application prospects. However, the current high-purity hexafluorobutadiene market is still occupied by foreign companies such as Showa Denko, Hosei Chemicals, Merck Group, Linde Gas, and Air Liquide. my country's market demand mainly relies on imports.


In recent years, in the face of increasingly strict semiconductor blockades in Western countries and the growing domestic market demand for fluorine-containing special gases, domestic companies have accelerated their deployment of hexafluorobutadiene, and some companies have broken through industrialization barriers, including China Juxin, Sinochem Blue Sky, CSSC Special Gas, Jinshi Fluorine Industry, Nanda Optoelectronics, etc.



02 fusible polytetrafluoroethylene

PFA is a copolymer of tetrafluoroethylene (TFE) and perfluoroalkyl vinyl ether (PAVE). Because its properties are similar to those of polytetrafluoroethylene, and it can be processed using thermoplastic resin processing methods, it is also called fusible. Polytetrafluoroethylene.


1~10% perfluoroalkyl vinyl ether in the PFA molecule significantly improves the flexibility of the polymer chain and reduces the crystallinity, giving PFA good thermoplasticity and overcoming the shortcomings of PTFE being difficult to process. It can be used with general thermoplastics It is processed by the molding process. Its long-term use temperature is the same as PTFE, and its mechanical properties at high temperatures are better than PTFE.


At the same time, PFA has the excellent chemical corrosion resistance of PTFE, excellent heat resistance, low friction coefficient, self-lubricating, flame retardant, waterproof and other properties. It can be made into anti-corrosion coatings, anti-aging coatings, special filter fibers, reaction Kettle linings, pipe linings, optical cable sheaths, aerospace equipment, etc. are widely used in construction, chemical industry, machinery, electrical, aerospace, medical and many other fields.


At present, the main overseas suppliers of PFA are Chemours, Solvay, Daikin, 3M, AGC, etc., with a market share of nearly 90%. There are relatively few companies producing PFA in China, including Dongyue Group, Yonghe Group, Juhua Group, etc. 


03 Perfluorosulfonic acid resin

In recent years, benefiting from multiple factors such as policy support, technological progress, cost reduction and market demand, the hydrogen fuel cell market has shown rapid growth both at home and abroad, which will drive rapid growth in demand for related materials.


Proton exchange membrane is one of the core materials of hydrogen fuel cells. The performance of the membrane directly determines the performance and service life of hydrogen fuel cells. According to the fluorine content, proton exchange membranes can be divided into perfluorinated proton exchange membranes such as perfluorosulfonic acid membranes, partially fluorinated proton exchange membranes such as polyvinylidene fluoride radiation graft membranes, and fluorine-free proton exchange membranes such as polybenzimidazole membranes.


At present, perfluorosulfonic acid proton exchange membrane is the only proton exchange membrane that has been successfully commercialized and actually used in the market. The raw materials for preparing perfluorosulfonic acid resin are mainly tetrafluoroethylene, perfluorosulfonyl vinyl ether monomer (PSVE), etc., whether it is the preparation of PSVE, the polymerization of perfluorosulfonic acid resin, or the film formation of perfluorosulfonic acid resin. There are extremely high technical barriers, so there are not many companies with the production capacity of perfluorosulfonic acid resin globally, and the production capacity is mainly concentrated in companies such as Chemours, Solvay, 3M, and Gore of the United States.


My country's research on perfluorosulfonic acid resin started not late. In the 1970s, the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, carried out research on the synthesis and polymerization of important monomers of perfluorosulfonic acid resin, and even carried out research on polymer membranes. Research on modification has been carried out, but unfortunately, large-scale production has not yet been achieved.


Domestic perfluorosulfonic acid resin manufacturers include Dongyue Group, Shanghai Sanaifu, Juhua Group, Suzhou Kerun, etc. However, except for Dongyue Group, most other companies do not have the capacity to supply perfluorosulfonic acid resin in batches. Therefore, our country The supply capacity of perfluorosulfonic acid resin is insufficient, and market demand relies heavily on imports. In the future, there will be greater room for domestic substitution of perfluorosulfonic acid resin.


04 Ethylene-tetrafluoroethylene copolymer

ETFE is the strongest fluoroplastic so far. While maintaining the good heat resistance, chemical resistance and electrical insulation properties of polytetrafluoroethylene, its radiation resistance and mechanical properties have been greatly improved, and its tensile strength has been greatly improved. It can reach 50MPa, which is nearly twice that of polytetrafluoroethylene. More importantly, its processing performance is greatly improved, especially its outstanding adhesion to the metal surface, which enables the tight lining process of fluoroplastics and steel to be truly realized.

ETFE not only has excellent impact resistance, electrical conductivity, thermal stability and chemical corrosion resistance, but also has high mechanical strength and good processing performance. It is widely used in chemical industry, electronic communications, equipment manufacturing, aerospace and other fields.

For a long time, ETFE has been monopolized by foreign manufacturers such as AGC, Daikin, Chemours, and 3M. Chinese scientists began research and development in the 1970s, but have not made substantial progress. Domestic demand for ETFE resin products is almost 100% dependent on it. Imports, and foreign countries have implemented embargoes on special ETFE resins needed in my country's Military Industry and National Defense and large aircraft fields, causing ETFE resin to become an important bottleneck restricting the application and development of my country's special fields.


At present, domestic manufacturers have achieved zero breakthroughs and are increasing their ETFE production capacity layout. Companies with production capabilities mainly include Dongyue Group, Juhua Co., Ltd., etc.


05 Fluorinated polyimide

Fluorinated polyimide (FPI) refers to a rigid polymer with a highly regular chemical structure containing imide rings in the main chain. It is produced by melt polycondensation or solution polycondensation reaction of fluorinated dianhydride and fluorinated diamine. Polyamic acid (FPAA) is a polymer material obtained by imidization. Compared with traditional PI, FPI inherits the characteristics of traditional PI such as high strength, high temperature resistance, deformation resistance, and bending resistance, and has the characteristics of good transparency, good electrical insulation, and low dielectric constant.


According to the chemical structure, FPI can be divided into diphenyl ether type FPI, benzene type FPI, benzophenone type FPI, and biphenyl type FPI; according to the performance, it can be divided into fluorine-containing polyetherimide (FPEI), fluorine-containing polyamide imide Amine (FPAI), etc.; according to the fluorine-containing group, it can be divided into two types: fully fluorinated PI and partially fluorinated PI.


In recent years, FPI has been applied in high-end fields including flexible OLED displays and electronic device cooling. Market demand continues to rise. However, FPI core technology is still concentrated in countries such as the United States and Japan. About 90% of the world's FPI is produced in Japan. FPI production technology is complex and requires many types of raw materials. Currently, domestic monomer raw materials with lower technical barriers, such as biphenyltetracarboxylic acid di-BPDA and pyromellitic acid dianhydride PMDA, have been produced on a large scale; for more special single , such as hexafluorodianhydride 6FDA, has gradually broken the monopoly of foreign companies. However, few companies have production capabilities for FPI resin. Some companies, including Shandong Zhongrou and Sanaifu, are promoting FPI industrialization.


06 Hydrofluoroether

Hydrofluoroethers are compounds composed of hydrogen, fluorine, oxygen and carbon atoms. They have an ether structure. Their ozone depletion potential (ODP) is zero, their global warming potential coefficient (GWP) is low, and their atmospheric residence time is very short. They are considered ideal CFCs. alternatives. In addition to excellent environmental properties, hydrofluoroethers also have the best thermal and chemical stability, moderate solubility, low toxicity, non-corrosive, non-flammable, non-smoking, good material compatibility, etc., and are easy to store and transportation.

Due to its excellent insulation, chemical inertness, low surface tension, good volatility, and good compatibility with organic solvents, hydrofluoroether has excellent compatibility with component materials used in semiconductor, chip, and liquid crystal manufacturing industries, so it is widely used in electronics. Cleaning agent is the original use of hydrofluoroether, and it is also one of the main applications at present. In addition, hydrofluoroether can also be used in coolant, anti-fingerprint agent diluent, foaming agent and other fields.


At present, domestic companies with hydrofluoroether production capabilities mainly include Dongyue Group, Juhua Co., Ltd., Shandong Huafu, Quanzhou Yuji, Zhejiang Noah, etc.


07 Ethylene-chlorotrifluoroethylene copolymer

ECTFE is a copolymer of ethylene and chlorotrifluoroethylene, which has extraordinary corrosion resistance to most inorganic and organic chemicals and organic solvents. Until now, except for chlorinated molten alkali or hot amines (such as aniline, dimethylamine), no solvent can corrode ECTFE below 120°C.


Compared with other thermoplastics, ECTFE's resistance to chlorine and chlorine derivatives at high temperatures is particularly outstanding. ECTFE has excellent corrosion resistance, extremely low permeability, excellent electrical properties and extremely smooth surface, and can be used safely in temperatures ranging from low to 149°C.


ECTFE not only has outstanding impact resistance, but also is a tough material with considerable mechanical strength. The surface of ECTFE products, similar to glass, prevents the growth of microorganisms, providing obvious hygienic advantages. Due to these excellent properties, ECTFE is widely used in chemical industry, petroleum drainage, washing, sewage treatment systems, chemical distribution systems and chemical cleaning systems of equipment.


It is understood that currently only Solvay is producing ECTFE in the world, and there is basically no large-scale production capacity in China.


08 2,3,3,3-Tetrafluoropropene

R1234yf, also known as HFO-1234yf, the chemical name is 2,3,3,3-tetrafluoropropene, has zero ODP and low GWP, and has good refrigeration effect. It is one of the most popular ODS substitutes and is known as As the fourth generation refrigerant with the most commercial prospects, it is currently mainly used in the field of automotive air conditioning, and the market demand continues to expand.


Prior to this, the refrigerant for automobile air conditioners mainly used R134a. R134a is a third-generation hydrofluorocarbon (HFCs) refrigerant with zero ODP, but has a high GWP and obvious greenhouse effect. As environmental protection requirements increase, it will be gradually phased out. Compared with R134a, R1234yf has lower GWP, similar physical and chemical properties, and the same atmospheric decomposition products. It can be used in the original vehicle air conditioning system. It is the most potential new refrigerant product to replace R134a and has been used in many cars.


European regulations have banned the use of refrigerants with a GWP >150 in new cars produced and sold within the country since 2017. R134a has been banned in European automobiles.


More News Follow Jiayuan for more news

Rare gases have such a wide range of applications

Rare gases are a general term for gases such as helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn). In the past, people believed that these gases did not react with other substances, so they were also called "inert gases."In fact, although these gases do not account for a high proportion in the air, they are indispensable in our modern life. In this issue, Jiayuan will talk about their common uses.1.As protective gasBecause the chemical properties of rare gases are very inactive, argon is often used as a shielding gas to isolate the air when welding precision parts or active metals (such as magnesium and aluminum) to prevent the metal from reacting with other substances at high temperatures.Iridium, the nuclear fuel of nuclear reactors, which oxidizes rapidly in the air, also needs to be machined under the protection of argon.In order to extend the service life of the light bulb, adding argon gas into the light bulb can reduce the evaporation of the tungsten filament and prevent the tungsten filament from oxidation.2. As an electric light sourceRare gases emit light of different colors when electricity is applied. The world's first neon light was made of neon. The red light emitted by neon has strong transmittance in the air and can pass through thick fog. Therefore, neon lights are often used as beacons in airports, ports, and water and land transportation routes. Argon or helium is filled into the tube, which emits light of light blue or light red when electricity is applied. Filling a mixture of helium, neon, and argon with different contents into the tube can make colorful neon lights.The commonly used fluorescent lamp is made by filling a small amount of mercury and argon gas in the lamp tube and applying fluorescent material (such as calcium halophosphate) on the inner wall. When the power is turned on, the discharge of mercury vapor generates ultraviolet rays in the tube, which stimulates the fluorescent material to emit visible light similar to sunlight, so it is also called a fluorescent lamp.When powered on, a high-voltage long-arc lamp filled with xenon can emit strong light that is tens of thousands times stronger than a fluorescent lamp. Therefore, it is called an "artificial little sun" and can be used for squares, stadiums, airports and other lighting. Neon lights, krypton gas, and xenon gas can also be used in laser technology.3. Medical treatment   Xenon lamps have high ultraviolet radiation and are used in medical technology. Xenon gas dissolves in cell oil, causing cell anesthesia and swelling, thereby temporarily stopping the action of nerve endings and achieving anesthesia. As an anesthetic without side effects, people have tried a mixture of 80% xenon and 20% oxygen.Isotopes of krypton and xenon are also used to measure cerebral blood flow, etc.4. Making Artificial AirHelium and oxygen are mixed into artificial air, which divers can breathe. Because in the deep sea with greater pressure, if you breathe with ordinary air, more nitrogen will be dissolved in the blood. When the diver rises from the deep sea and gradually restores the normal pressure in the body, the nitrogen dissolved in the blood should be released to form bubbles, blocking the microvessels and causing "gas stasis". The solubility of helium in the blood is much lower than that of nitrogen. If the above phenomenon does not occur, but the ordinary air is replaced by a mixture of helium and oxygen (artificial air). 5. InflationHelium is the lightest gas besides hydrogen. Hydrogen is flammable and explosive, while helium is a colorless, odorless, inert gas. It is chemically inactive. Generally speaking, it is difficult to react with other substances. Helium has been used to fill balloons and airships instead of hydrogen. 6. Can produce a variety of mixed gas lasersHelium-neon laser is one of them. Helium-neon mixed gas is sealed in a special quartz tube. Under the encouragement of an external high-frequency oscillator, inelastic collisions occur between atoms of the mixed gas, and energy transfer occurs between the stimulated atoms, resulting in electronic transitions and emitting stimulated radiation waves and near-infrared light corresponding to the transitions. Helium-neon lasers can be used for measurement and communication.7. Low temperatureThe boiling point of liquid helium is -269℃, which is the most difficult to liquefy of all gases. Using liquid helium, ultra-low temperatures close to absolute zero (-273.15℃) can be achieved. Liquid helium is an ordinary liquid with the properties of ordinary liquids. Liquid helium below 2.2 thousand is a superfluid with many abnormal properties. For example, it has superconductivity and low viscosity. Its viscosity is 1% of the viscosity of hydrogen. Liquid helium can flow upward along the inner wall of the container and then slowly flow along the outer wall of the container. This phenomenon is of great significance to the research and verification of quantum theory. In today's era of rapid technological development, rare gases have been widely used in many fields due to their unique and excellent properties. Whether in the lighting industry, they provide us with bright and energy-saving light sources; or in the electronic chip manufacturing process, they serve as key protective gases and etching gases to help produce high-precision chips; or in the medical field, they play an indispensable role in specific diagnostic and treatment methods; and in high-end technological frontiers such as aerospace, they provide guarantees for the stable operation of various precision instruments and equipment. Rare gases are everywhere, and their value is immeasurable. If you are eager to learn more about rare gas products and accurately grasp their application trends, you are sincerely welcome to come to our company for a detailed discussion . Our company has a professional team and rich industry experience, and can provide you with comprehensive and detailed rare gas products .

More +

2025-01-07

Hexafluorobutadiene: An emerging key material for the semiconductor industry

The semiconductor manufacturing process has extremely high requirements for etching gases. As chip manufacturing processes continue to shrink, the demand for high-precision etching is becoming more and more urgent. Hexafluorobutadiene (C₄F₆), as an advanced etching gas, plays an important role in the semiconductor etching process.1. Application advantages( 1 ) High etching selectivity : In semiconductor manufacturing, hexafluorobutadiene can etch different material layers with high precision. For example, when etching materials such as silicon dioxide and silicon nitride, it can selectively remove the target material with minimal damage to other materials. This is because the molecular structure of hexafluorobutadiene enables it to precisely interact with the chemical bonds of the target material during the etching reaction.( 2 ) Fine etching capability : Hexafluorobutadiene performs well in etching circuit patterns at the submicron and nanometer levels. It can achieve very fine line etching, which helps to improve the integration of chips. For example, in chip manufacturing with a process of 10 nanometers and below, hexafluorobutadiene can etch complex circuit structures to meet the manufacturing requirements of high-performance chips.       2. Economic and environmental benefits( 1 ) Reduce production costs : The use of hexafluorobutadiene can reduce side reactions during the etching process, thereby improving etching efficiency. This means that in large-scale production, the etching process time can be shortened and the operating cost of the equipment can be reduced. For example, compared with traditional etching gases, the use of hexafluorobutadiene can increase the production capacity of etching equipment by about 30%, which correspondingly reduces the etching cost per chip.( 2 ) Good environmental performance : Hexafluorobutadiene produces relatively few decomposition products during the etching process and has less pollution to the environment. Its global warming potential (GWP) is low and meets environmental protection requirements. In the context of increasingly stringent environmental regulations, the use of hexafluorobutadiene can help semiconductor companies meet environmental standards and reduce greenhouse gas emissions.        3. Challenges and solutions( 1 ) Supply stability : The production technology of hexafluorobutadiene is relatively complex, and there are currently few manufacturers in the world that can produce it on a large scale. Jiayuan is keenly aware of this, keeps up with market trends, and is more strict with itself in terms of production quality and production safety, so as to ensure stable supply of products while also guaranteeing product quality.( 2 ) Safe storage and transportation : Hexafluorobutadiene is a high-pressure gas and is somewhat dangerous. Safety regulations must be strictly followed during storage and transportation. For example, special high-pressure gas containers must be used and transportation vehicles must meet safety standards. At the same time, companies need to provide safety training to relevant personnel to reduce safety risks.We have a professional sales team and technical service team to provide customers with high-quality fluorine chemical products, good technical support, and a sound after-sales service system. Based on the principle of "customer first, integrity first", we provide high-quality products and services and go hand in hand with customers. Welcome domestic and foreign enterprises/companies/institutions to establish long-term cooperative relations with our company !

More +

2025-01-07

Magnesium fluoride coating: multi-field applications and excellent performance

The main purpose of coating is to reduce reflections and to improve the transmittance of the lens and the quality of the image. In modern lens manufacturing processes, the lens must be coated. Lens coating is based on the principle of optical interference. A layer of substance (usually fluoride) with a thickness of one-quarter wavelength is coated on the surface of the lens to minimize the reflection of the lens to the color light of this wavelength. One layer of film only works on one color light, while multi-layer coating can work on multiple colors of light. Multi-layer coating usually uses different materials to repeatedly coat different thicknesses of film layers on the surface of the lens. Multi-layer coating can greatly improve the transmittance of the lens. For example, the reflectivity of each surface of an uncoated lens is 5%, which is reduced to 2% after single-layer coating, and can be reduced to 0.2% with multi-layer coating. This can greatly reduce the diffuse reflection between the lenses of the lens, thereby improving the contrast and sharpness of the image.Magnesium fluoride coatingMagnesium fluoride is a kind of coating material. Magnesium fluoride crystal (MgF 2 ) belongs to the tetragonal system, with a melting point of 1255°C, high hardness, good mechanical properties, stable chemical properties, and not easy to deliquesce and corrode. Its main feature in optical properties is that it has a high transmittance in the vacuum ultraviolet band (the transmittance at 170nm is still above 80%). It is widely used in optical fiber communications, military fields and various optical components.Application of magnesium fluoride coatingThe main application of magnesium fluoride coating is coating on the surface of ordinary tempered glass, thereby improving the light transmittance of the tempered glass surface and achieving easy cleaning function, while also extending the life of the glass. AR coated glass can currently be mainly used in solar cell components, solar thermal, construction, automotive glass and other fields.Preparation of magnesium fluoride coatingMagnesium fluoride coating uses evaporation method, which is called evaporation coating by heating and evaporating a certain substance to make it deposit on the solid surface. This method was first proposed by Faraday in 1857 and has become one of the commonly used coating technologies in modern times. Evaporating substances such as metals, compounds, etc. are placed in a crucible or hung on a hot wire as an evaporation source, and the substrates to be plated such as metals, ceramics, plastics, etc. are placed in front of the crucible. After the system is evacuated to a high vacuum, the crucible is heated to evaporate the substance in it, and the atoms or molecules of the evaporated substance are deposited on the surface of the substrate in a condensed manner. The film thickness can range from hundreds of angstroms to several microns. The film thickness is determined by the evaporation rate and time of the evaporation source (or by the charge amount), and is related to the distance between the source and the substrate. For large-area coating, a rotating substrate or multiple evaporation sources are often used to ensure the uniformity of the film thickness. The distance from the evaporation source to the substrate should be less than the mean free path of the vapor molecules in the residual gas to prevent chemical reactions caused by collisions between the vapor molecules and the residual gas molecules. The high-quality glass is processed on one or both sides to have a lower reflectance than ordinary glass, and the reflectivity of light is reduced to below 1%. In the visible light range, the single-sided reflectivity of ordinary glass is about 4%, and the total spectral reflectivity is about 8%.Jiayuan has layout in both the upstream and downstream of the fluorine chemical industry chain, forming a complete fluorine chemical industry chain. At the same time, Jiayuan is also constantly conducting technological research and development and innovation, and has stronger competitiveness and market position in the production, sales and research and development of magnesium fluoride products. If you are interested in magnesium fluoride products or Jiayuan, you can visit our official website for viewing and consultation!

More +

2025-01-07

Sodium metaphosphate: widely used in many fields and has broad market prospects

Recently, the application of sodium metaphosphate in many industries has attracted widespread attention. Its unique properties enable it to play an important role in the fields of chemical, food, pharmaceuticals, etc., and the market demand is also showing a growing trend.In the chemical industry, sodium metaphosphate is an important auxiliary agent. It is often used in metal surface treatment, electroplating and cleaning. Due to its good corrosiveness and cleaning ability, it can effectively remove dirt and oxides on the metal surface, providing a good foundation for the subsequent processing of metal products. For example, in the automobile manufacturing industry, sodium metaphosphate can be used to clean auto parts and improve the surface quality of parts, thereby ensuring the overall performance and safety of the car. In addition, in the field of industrial cleaning, sodium metaphosphate is also a commonly used cleaning agent that can quickly and effectively remove various oil stains and stains, providing convenience for industrial production.The food industry is another important application area of sodium metaphosphate. As a food additive, sodium metaphosphate can be used as a food emulsifier, chelating agent and texturizer. In dairy products, it can stabilize the emulsion system and improve the taste and quality of dairy products; in meat products, sodium metaphosphate can improve the gel strength and water holding capacity of meat products, making meat products more tender and juicy1. As people's requirements for food quality continue to increase, the market demand for food-grade sodium metaphosphate is also gradually increasing. According to data from relevant market research institutions, the market size of food-grade sodium metaphosphate has continued to expand in recent years, and it is expected to maintain a high growth rate in the next few years.In the pharmaceutical field, sodium metaphosphate also has certain applications. It can be used as an excipient in pharmaceutical preparations to improve the stability and solubility of drugs. For example, in some oral liquid preparations, sodium metaphosphate can play a role in regulating pH and increasing drug stability. In addition, in some topical drugs, sodium metaphosphate can also be used as a moisturizer and stabilizer to improve the efficacy of the drug. From the market perspective, the global sodium metaphosphate market is currently highly competitive. Many domestic and foreign companies have increased their R&D investment and continuously launched new products and technologies to improve their market competitiveness. At the same time, with the continuous improvement of environmental protection requirements, some environmentally friendly sodium metaphosphate products have gradually gained favor in the market. For example, some companies have developed low-pollution, low-energy sodium metaphosphate production processes, which not only reduce production costs, but also reduce the impact on the environment, and have good market prospects.Industry experts said that as a multifunctional chemical, sodium metaphosphate is still expanding its application areas. In the future, with the continuous advancement of science and technology and the continuous increase in market demand, the market size of sodium metaphosphate is expected to continue to expand. At the same time, Jiayuan keeps up with market trends, continuously strengthens technological innovation, and improves product quality and performance to meet market demand.

More +

2024-12-25