
Fluorine rubber refers to a synthetic polymer elastomer containing fluorine atoms on the carbon atoms of the main chain or side chain. It not only has good mechanical properties, but also has high resistance to high temperature, oil and various chemicals. Its characteristics and comprehensive performance are particularly excellent, so it has a wide range of applications, especially in the production of special sealing products. It is an indispensable material in modern aviation, missiles, rockets, aerospace and other science and technology and other industries (such as automobiles) .
1. Structural characteristics and application fields of fluororubber
Because there is no unsaturated C=C bond structure in the main chain of polyolefin fluororubber (type 26 fluororubber, type 23 fluororubber) and nitroso fluororubber. Reduces the possibility of degradation and chain scission on the main chain due to oxidation and pyrolysis. The methylene group in vinylidene fluoride plays a very important role in the flexibility of the polymer chain. For example, fluorine rubber 23-21 and fluorine rubber 23-11 are composed of vinylidene fluoride and chlorotrifluoroethylene in a ratio of 7:3 respectively. And the ratio of 5:5, obviously, the former is softer than the latter.
Whether it is vinylidene fluoride and chlorotrifluoroethylene, or the copolymers of the former and hexafluoropropylene, and their terpolymers with tetrafluoroethylene, they can be mainly crystalline or amorphous. This depends on how much of one monomer is involved when the other monomer is the main chain segment of the copolymer. Electron diffraction studies indicate that when the mole fraction of hexafluoropropylene in the vinylidene fluoride segment reaches 7%, or the mole fraction of vinylidene fluoride in the chlorotrifluoroethylene segment reaches 16%, the two copolymers still have and Its crystal structure is comparable to that of a homopolymer. However, when the mole fraction of hexafluoropropylene in the former increases to more than 15%, or the mole fraction of vinylidene fluoride in the latter increases to more than 25%, the crystal lattice is greatly destroyed, causing them to have an amorphous shape with mainly rubber properties. structure. This is due to the increase in the amount of the second monomer introduced, which destroys the regularity of its original molecular chain. Fluorine rubber can be used together with nitrile rubber, acrylic rubber, ethylene-propylene rubber, silicone rubber, fluorosilicone rubber, etc. to reduce costs and improve physical and mechanical properties and process performance.
The earliest fluorine rubber was poly-2-fluoro-1,3-butadiene and its copolymer with styrene, propylene, etc., which was trial-produced by DuPont Company in the United States in 1948. Its performance is no better than that of chloroprene rubber and butadiene rubber. , and it is expensive and has no actual industrial value. In the late 1950s, the American Thiokol Company developed a binary nitroso fluororubber with good low-temperature performance and resistance to strong oxidants (N2O4). Fluorine rubber began to enter practical industrial applications. China has also developed a variety of fluororubbers since 1958, mainly polyolefin fluororubbers, such as type 23, 26, 246 and nitroso fluororubber; later, a newer variety of tetrapropylene fluororubber was developed , perfluoroether rubber, fluorophosphorus rubber. These fluorine rubber varieties are first based on the supporting needs of aviation, aerospace and other national defense and military industries, and are gradually promoted and applied to the civil industry sector. They have been used in modern aviation, missiles, rockets, aerospace navigation, ships, atomic energy and other technologies as well as automobiles, shipbuilding, chemistry, Petroleum, telecommunications, instruments, machinery and other industrial fields.
Fluorine rubber is widely used in daily life, such as automotive parts, aviation and aerospace fields, mechanical seals, pumps, reactors, agitators, compressor casings, valves, various instruments and other equipment as valve seats. , valve stem packing, diaphragms and gaskets, as well as in the rubber sheet industry, semiconductor manufacturing industry and food and pharmaceutical industries.
With the use of unleaded gasoline and electronic injection devices in automobiles, the structure and materials of fuel hoses have changed greatly. The inner rubber layer has been replaced by fluorine rubber instead of nitrile rubber. In order to reduce fuel penetration and further improve heat resistance, the inner rubber layer has been The rubber layer mostly adopts a composite structure, which is composed of fluorine rubber and chlorohydrin rubber or acrylate rubber. Since fluorine rubber is relatively expensive, the fluorine rubber layer is relatively thin, with a thickness of about 0.2 to 0.7 mm. This kind of structure fuel hose has become a mainstream product abroad. Our country has also developed this kind of hose with fluororubber as the inner layer, and it is used in Santana, Audi, Jetta, Fukang and other models of cars. In terms of automobile engines, gearboxes, and valve oil seals with high technical content, the materials selected are mainly fluorine rubber, hydrogenated nitrile rubber, etc.
Fluorine rubber and silicone rubber composite oil seals have become the most commonly used engine crankshaft oil seals. The hydraulic system of loading and unloading trucks and the hydraulic system of large loading and unloading trucks work continuously for a long time, and the oil temperature and machine parts temperature rise rapidly. Ordinary rubber cannot meet their working requirements, and fluorine rubber products can meet various demanding requirements due to their excellent temperature resistance. technical requirements. As the automotive industry's requirements for reliability and safety continue to increase, the demand for fluororubber in the automotive industry has also shown a rapid growth trend.
In addition to automotive industry applications, fluororubber seals are used in drilling machinery, oil refining equipment, natural gas and power plant desulfurization devices. They can withstand harsh conditions such as high temperature, high pressure, oil and strong corrosive media; in chemical production, fluororubber seals Parts are used in pumps and equipment containers to seal chemical substances such as inorganic acids and organic substances. In the petroleum and chemical industries, fluorine rubber sealing products are used in mechanical seals, pumps, reactors, agitators, compressor casings, valves, various instruments and other equipment. They are usually used as packing for valve seats, valve stems, and diaphragms. and gaskets. Fluorine rubber is one of the indispensable high-performance materials for modern aviation, missiles, rockets, aerospace navigation, ships, atomic energy and other science and technology. In recent years, new fluorine rubber products have been continuously developed in the aviation and aerospace fields.
2. Main properties of fluororubber
Fluorine rubber has unique properties, and the properties of its vulcanized rubber are described below.
(1) Corrosion resistance: Fluorine rubber has the best corrosion resistance. Generally speaking, its stability against organic liquids (fuel oil, solvents, hydraulic media, etc.), concentrated acids (nitric acid, sulfuric acid, hydrochloric acid), high-concentration hydrogen peroxide and other strong oxidants is superior to other rubbers. .
(2) Swelling resistance: Fluorine rubber has a high degree of chemical stability and has the best media resistance among all elastomers currently. Type 26 fluorine rubber is resistant to petroleum-based oils, diester oils, silicone oils, silicic acid oils, inorganic acids, most organic and inorganic solvents, drugs, etc., and is only not resistant to low-molecular ketones, ethers, Ester, not resistant to amines, ammonia, hydrofluoric acid, chlorosulfonic acid, and phosphoric acid hydraulic oils. The dielectric performance of type 23 fluorine rubber is similar to that of type 26, and it is more unique. Its resistance to strong oxidizing inorganic acids such as fuming nitric acid and concentrated sulfuric acid is better than that of type 26. It can be immersed in 98% HNO3 at room temperature. 27 Its volume expansion is only 13% to 15%.
(3) Heat resistance and high temperature resistance: In terms of aging resistance, fluorine rubber is comparable to silicone rubber and better than other rubbers. Type 26 fluororubber can work at 250 ℃ for a long time and at 300 ℃ for a short time. Type 23 fluororubber still has high strength after aging at 200 ℃ × 1000 h, and can also withstand short-term high temperature of 250 ℃. The thermal decomposition temperature of tetrapropylene fluorine rubber is above 400 ℃ and can work at 230 ℃ for a long time. The performance changes of fluorine rubber at different temperatures are greater than those of silicone rubber and general-purpose butyl rubber. Its tensile strength and hardness both decrease significantly with the increase of temperature. The characteristics of the change of tensile strength are: below 150 ℃, with temperature It decreases rapidly with the increase of temperature, and decreases slowly with the increase of temperature between 150 and 260 ℃.
The high temperature resistance of fluorine rubber is the same as that of silicone rubber, and it can be said to be the best among current elastomers. 26-41 fluorine rubber can be used for long-term use at 250 ℃ and short-term use at 300 ℃; 246 fluorine rubber has better heat resistance than 26-41. The physical properties of 26-41 after air thermal aging at 300 ℃ × 100 h are equivalent to those of type 246 after hot air aging at 300 ℃ × 100 h. Its elongation at break can be maintained at about 100%, and the hardness is 90 to 95 degrees. . Type 246 maintains good elasticity after hot air aging at 350°C for 16 hours, maintains good elasticity after hot air aging at 400°C for 110 minutes, and contains spray carbon black, thermal carbon black or carbon fiber after hot air aging at 400°C for 110 minutes. The elongation of the rubber increases by about 1/2 to 1/3, and the strength decreases by about 1/2, but still maintains good elasticity. Type 23-11 fluorine rubber can be used at 200 ℃ for a long time and at 250 ℃ for a short time.
(4) Low temperature resistance: The low temperature performance of fluororubber is not good, which is due to its own chemical structure, such as the Tg of 23-11 type > 0 ℃. The low-temperature properties of fluororubber actually used are usually expressed by brittle temperature and compression cold resistance coefficient. The formula of the rubber compound and the shape of the product (such as thickness) have a greater impact on the brittleness temperature. If the amount of filler in the formula increases, the brittleness temperature will deteriorate sensitively. As the thickness of the product increases, the brittleness blending degree will also deteriorate sensitively. The low-temperature resistance of fluorine rubber generally allows it to maintain elasticity at a limit temperature of -15 to 20 ℃. As the temperature decreases, its tensile strength increases and appears strong at low temperatures. When used as seals, low temperature seal leakage problems often occur. Its brittleness temperature changes with the thickness of the sample. For example, the brittleness temperature of type 26 fluororubber is -45 ℃ when the thickness is 1.87 mm, -53 ℃ when the thickness is 0.63 mm, and -69 ℃ when the thickness is 0.25 mm. The brittleness temperature of its standard sample type 26 fluororubber is -25~-30 ℃, the brittleness temperature of type 246 fluororubber is -30~-40 ℃, and the brittleness temperature of type 23 fluororubber is -45~-60 ℃.
(5) Resistance to superheated water and steam: The stability of fluororubber against the action of hot water not only depends on the body material, but also on the combination of the rubber. For fluorine rubber, this performance mainly depends on its vulcanization system. Peroxide vulcanization systems are better than amine and bisphenol AF vulcanization systems. The performance of type 26 fluorine rubber using an amine vulcanization system is worse than that of general synthetic rubber such as ethylene-propylene rubber and butyl rubber.
(6) Compression deformation performance: Compression deformation is its key performance when fluororubber is used for sealing at high temperatures. The reason why Viton type fluororubber has been widely used is inseparable from its improvement in compression deformation. It is an important performance that must be controlled as a sealing product. The compression deformation performance of type 26 fluororubber is better than that of other fluororubbers, which is one of the reasons why it is widely used. Its compression deformation appears to be very large in the temperature range of 200 to 300 ℃. However, in the 1970s, the American DuPont Company improved it and developed a low compression deformation rubber compound (Viton E-60C), which was improved from a raw rubber variety (Viton A to Viton E-60) and a vulcanization system. The selection (from amine vulcanization to bisphenol AF vulcanization) has been improved, which makes the fluorine rubber have better compression deformation when sealed for a long time at a high temperature of 200 ℃. Under the condition of long-term storage of 149 ℃, the fluorine rubber has better The seal retention rate is the best among all types of rubber.
(7) Weathering resistance and ozone resistance: Fluorine rubber has excellent weathering resistance and ozone resistance. According to reports, the performance of VitonA developed by DuPont is still satisfactory after 10 years of natural storage, and there is no obvious cracking after 45 days in air with an ozone volume fraction of 0.01%. Type 23 fluororubber also has excellent weather aging resistance and ozone resistance.
(8) Mechanical properties: Fluorine rubber generally has high tensile strength and hardness, but poor elasticity. The general strength of type 26 fluorine rubber is between 10 and 20 MPa, the elongation at break is between 150 and 350%, and the tear resistance is between 3 and 4 kN/m. The strength of type 23 fluorine rubber is between 15.0 and 25 MPa, the elongation is between 200% and 600%, and the tear resistance is between 2 and 7 MPa. Generally, fluorine rubber has a large compression deformation at high temperatures. However, if compared under the same conditions, such as from the compression deformation of the same time at 150 ℃, both butadiene and chloroprene rubber are larger than type 26 fluorine rubber, and type 26 The compression deformation of fluorine rubber at 200 ℃ × 24 h is equivalent to the compression deformation of butadiene rubber at 150 ℃ × 24 h.
(9) Electrical properties: The electrical insulation properties of fluororubber are not very good and are only suitable for use under low frequency and low voltage. Temperature has a great influence on its electrical properties. When it rises from 24 ℃ to 184 ℃, its insulation resistance drops 35,000 times. The electrical insulation properties of type 26 fluororubber are not very good and are only suitable for low-frequency and low-voltage applications. Temperature has a great influence on its electrical properties, that is, as the temperature increases, the insulation resistance decreases significantly. Therefore, fluororubber cannot be used as an insulating material at high temperatures. The type and amount of fillers have a great influence on the electrical properties. Precipitated calcium carbonate gives the vulcanized rubber higher electrical properties, while other fillers have slightly worse electrical properties. As the amount of fillers increases, the electrical properties decrease.
(10) High vacuum resistance: Fluorine rubber has the best vacuum resistance. This is because fluororubber has a small outgassing rate and a very small amount of gas volatilization under high temperature and high vacuum conditions. Type 26 and 246 fluororubber can be used in ultra-high vacuum situations of 133×10-9 ~ 133×10-10 Pa, and are important rubber materials in spacecraft. The air permeability of fluorine rubber is the lowest among rubbers, similar to butyl rubber and nitrile rubber. The addition of fillers can reduce the air permeability of vulcanized rubber, and the effect of barium sulfate is more significant than that of medium particle thermal carbon black (MT). The gas permeability of fluororubber increases with temperature. The solubility of gas in fluororubber is relatively large, but the diffusion rate is very small, which is beneficial to application under vacuum conditions. The solubility of fluorine rubber to gas is relatively large, but the diffusion rate is relatively small, so the overall breathability is also small. According to reports, the breathability of type 26 fluororubber to oxygen, nitrogen, helium, and carbon dioxide gases at 30°C is equivalent to butyl rubber and butyl rubber, and better than chloroprene and natural rubber. In fluorine rubber, the addition of fillers fills the gaps inside the rubber, thereby reducing the air permeability of the vulcanized rubber, which is very beneficial for vacuum sealing.
(11) Flame resistance: The flame resistance of rubber depends on the halogen content in the molecular structure. The more halogen content, the better the flame resistance. Fluorine rubber can burn when in contact with flame, but will automatically extinguish after leaving the flame, so fluorine rubber is a self-extinguishing rubber.
(12) Radiation resistance: Fluorine rubber is a material that is resistant to moderate doses of radiation. The radiation effect of high-energy rays can cause cracking and structuring of fluorine rubber. The radiation resistance of fluororubber is relatively poor among elastomers. Type 26 rubber shows a cross-linking effect after radiation, and type 23 fluororubber shows a cracking effect. The performance of type 246 fluorine rubber changes drastically under normal temperature radiation in the air at a dose of 5×107 Lun. Under the condition of 1×107 Lun, the hardness increases by 1 to 3, the strength decreases by less than 20%, and the elongation decreases by 30% to 50%. Therefore, it is generally believed that type 246 fluororubber can withstand 1 × 107 liters, and the limit is 5 × 107 liters.
2,3,5-Trifluoropyridine: A rising star in the fields of medicine and materials, leading the innovative application of fluorinated compounds
一、IntroductionRecently, the fluorine-containing fine chemical 2,3,5-trifluoropyridine has become a hot topic in the research and development of medicine, pesticides and high-end materials due to its unique chemical properties and wide application potential. Industry analysis points out that this compound is promoting technological innovation in multiple industries with its high activity, stability and selectivity given by fluorine atoms, and has broad market prospects in the future. 二、Pharmaceutical field: the “key puzzle piece” of innovative drugsIn pharmaceutical research and development, 2,3,5-trifluoropyridine is widely used as a core intermediate to construct small molecule targeted drugs. The introduction of fluorine atoms can significantly improve the metabolic stability and membrane permeability of drug molecules, especially in the fields of anti-cancer, anti-viral and central nervous system disease treatment.In addition, the application of 2,3,5-trifluoropyridine in radiopharmaceutical labeling has also attracted much attention. Its pyridine ring structure can efficiently coordinate with metal isotopes, providing new ideas for the development of integrated drugs for precise diagnosis and treatment of tumors.三、Agrochemical Industry: The “Efficient Engine” of Green PesticidesIn the field of agricultural chemicals, 2,3,5-trifluoropyridine has become the key to the synthesis of new insecticides and fungicides. Fluorine-containing groups can enhance the selectivity of pesticides for target organisms and reduce the risk of environmental residues.四、High-end materials: the "invisible driving force" of the electronics industryIn the field of materials science, derivatives of 2,3,5-trifluoropyridine are breaking through the boundaries of traditional applications. Its fluorinated structure can give liquid crystal materials faster response speed and wider temperature application range, and is used in the manufacture of flexible display panels. In addition, as a fluorinated polymer monomer, this compound exhibits excellent high temperature resistance and corrosion resistance in lithium-ion battery electrolytes and semiconductor packaging materials.五、Market Outlook: Policy and Technology DrivenAccording to the Global Market Insights report, the market size of fluorinated fine chemicals is expected to exceed US$12 billion in 2028, with a compound annual growth rate of 6.5%. As a high value-added product, 2,3,5-trifluoropyridine has particularly active capacity expansion plans in emerging markets such as China and India.六、Conclusion "The innovative application of fluorine-containing compounds is the core track of future fine chemicals." Experts from the Institute of Chemistry of the Chinese Academy of Sciences pointed out, "The multi-field breakthroughs of 2,3,5-trifluoropyridine not only reflect the power of molecular design, but also provide key technical support for industrial upgrading under the goal of carbon neutrality." With the continuous optimization of green synthesis processes, this "fluorinated star" may write an industrialization legend in more cutting-edge fields.If you have any needs or questions, please feel free to contact us!
More +
2025-08-15
Praseodymium-neodymium fluoride: the key to unlocking a market worth hundreds of billions of yuan; new rare earth materials lead the low-carbon technological revolution
1. IntroductionUnder the wave of global energy transformation and high-tech industry upgrading, a rare earth fluoride called "praseodymium-neodymium fluoride" is quietly becoming the core material for breakthrough technologies in many fields. With the unique chemical empowerment of the fluorine element, praseodymium-neodymium fluoride has shown irreplaceable high value in new energy, high-end optics, quantum communications and other fields, and is known as the "new fulcrum of strategic materials in the 21st century."1. New energy revolution: PrNdF injects a "super strong heart" into permanent magnet motorsIn the field of electric vehicles and wind power generation, praseodymium-neodymium fluoride has become the key to improving motor efficiency by optimizing the high temperature resistance and corrosion resistance of neodymium iron boron permanent magnets. The latest research by the Chinese Academy of Sciences shows that the introduction of fluorine reduces the magnetic energy product loss of magnets by 40% at a high temperature of 200°C, helping Tesla, BYD and other automakers achieve breakthroughs in motor lightweighting and driving range. The industry predicts that the global demand for praseodymium-neodymium fluoride in new energy vehicles will surge by 300% in 2025, and the strategic value of fluorine will catch up with the "rare earth quota".2. Optical cutting edge: Fluoride crystals usher in a new era of laser technologyPraseodymium-neodymium fluoride has been successfully used in the manufacture of mid-infrared laser crystals due to the low phonon energy characteristics of fluorine. TRUMPF of Germany has used this material to develop the world's first kilowatt-class 3μm-band industrial laser, which is 5 times more accurate than traditional CO₂ lasers, greatly promoting the upgrading of precision medicine and semiconductor cutting industries. Experts pointed out that "the lattice stability of fluorine allows the laser life to be extended to 100,000 hours, which is a milestone in the history of optical materials."3. Quantum Track: PrNdF becomes quantum storage "time capsule"The Tsinghua University team recently published their results in Nature Materials. The ultra-narrow spectral linewidth of fluorine ions in praseodymium-neodymium fluoride makes it an ideal carrier for quantum memory, which can extend the quantum state preservation time from microseconds to milliseconds. This breakthrough has cleared key obstacles for the construction of quantum communication networks, and the "electronic control power" of fluorine is highlighted here - each gram of material is worth more than 10,000 yuan, but it may leverage a trillion-level quantum industry.4. Resource Game: Fluorine + Rare Earth Build China's "Dual Chain" MoatCurrently, 90% of the world's high-purity praseodymium-neodymium fluoride production capacity is concentrated in China, and its preparation relies on the deep integration of rare earth separation technology and the fluorine chemical industry chain. The Ministry of Industry and Information Technology's "14th Five-Year Plan" new materials plan clearly lists fluorine-based rare earth compounds as "strategic resource dual-control products." Industry insiders analyzed that the irreplaceable nature of fluorine and the rare earth supply pattern may give rise to a new generation of material pricing power battles similar to the "lithium-cobalt dispute."2. Future Prospects As countries accelerate the layout of cutting-edge fields such as hydrogen energy storage and transportation, 6G terahertz communications, the application boundaries of praseodymium-neodymium fluoride continue to expand. The European Union has launched a special plan called "Fluorine Rare Earth 2030" and plans to invest 2 billion euros to break through the recycling technology of praseodymium-neodymium fluoride. In this scientific and technological competition, whoever can master the collaborative innovation code of "fluorine" and rare earths may win the right to win the next generation of high-end manufacturing.3. ConclusionFrom the laboratory to the industrial end, praseodymium-neodymium fluoride is leveraging "fluorine" to pry open a cross-domain material revolution. Behind it is not only the victory of chemical elements, but also reveals a hard truth: in the era of carbon neutrality and digital civilization, the strategic value ranking of the periodic table is being redefined. Jiayuan keeps up with market development trends, conducts research and development projects, diversifies the company's product areas, and enhances Jiayuan's brand image.
More +
2025-08-15
Potassium fluoride application areas continue to expand, new energy and electronics industries become new growth engines
1. IntroductionRecently, the global chemical and materials industry has been paying more and more attention to potassium fluoride (KF). As an important inorganic fluoride, potassium fluoride has shown diversified application potential in the fields of medicine, new energy, electronic manufacturing and environmental protection technology due to its unique chemical properties. Driven by both technological innovation and market demand, potassium fluoride is extending from traditional fields to high value-added industries, becoming one of the key materials to promote industry upgrading.2. Potassium fluoride has multiple application scenarios1. Pharmaceutical field: the "invisible promoter" of efficient catalysts Potassium fluoride, as an efficient fluorinating agent in organic synthesis, is widely used in the production of anti-tumor drugs, antibiotics and cardiovascular drugs. For example, its role in the molecular structure modification of fluorine-containing drugs is irreplaceable. A domestic pharmaceutical company recently announced that by optimizing the potassium fluoride catalytic process, it has successfully increased the synthesis efficiency of a certain targeted drug by 30%, significantly reducing production costs. 2. New energy track: New breakthrough in lithium battery electrolyte additives As the global energy transition accelerates, potassium fluoride is emerging in the field of lithium-ion batteries. Studies have shown that electrolytes containing potassium fluoride can effectively improve the high-temperature stability and cycle life of batteries. A leading Japanese battery company has launched a related pilot project and is expected to achieve commercial application in 2025. 3. Electronic materials: core raw materials for precision etching and coating In semiconductor and photovoltaic panel manufacturing, potassium fluoride is used in glass etching and thin film deposition processes. The demand for its high-purity products (≥99.9%) has surged with the expansion of 5G and AI chip production capacity. According to industry reports, the global electronic-grade potassium fluoride market size will increase by 18% year-on-year in 2023, with Chinese manufacturers accounting for more than 40% of the market share. 4. Environmental protection technology: the "green guard" of industrial wastewater treatmentPotassium fluoride has performed well in the treatment of heavy metal-containing wastewater. The new potassium fluoride composite precipitant developed by a European environmental protection company can increase the removal rate of pollutants such as lead and cadmium to 99.5%, and the treatment cost is 25% lower than that of traditional solutions. It has now obtained the EU Ecolabel certification.3. Market demand surges, with Asia-Pacific leading the world According to Grand View Research data, the global potassium fluoride market will reach US$870 million in 2023 and is expected to exceed US$1.4 billion in 2030, with a compound annual growth rate of 6.5%. Among them, the Asia-Pacific region benefits from the cluster effect of the new energy industry chain and the expansion of the electronics manufacturing industry, accounting for more than 55% of the demand. China, South Korea and India have become the main growth poles, and many international chemical giants have announced the expansion of high-purity potassium fluoride production lines in China.4. Give equal weight to technological innovation and safety regulationsDespite the promising prospects, the corrosiveness and environmental risks of potassium fluoride still need to be vigilant. Industry experts emphasize that companies need to upgrade their production safety processes simultaneously. For example, the "microencapsulated potassium fluoride" technology developed by a German company can significantly reduce dust hazards during transportation and use, and has now entered the patent layout stage. In addition, ISO will release a new version of the international standard for fluoride treatment in 2024 to further regulate industry operations.5. Expert opinions"The cross-border application of potassium fluoride confirms the transformation and upgrading path of basic chemicals," said the Secretary-General of the China Fluorine and Silicone Organic Materials Industry Association. "Future industry competition will focus on high-end and green solutions. Enterprises need to increase collaborative innovation with universities and research institutions, while building a circular economy model to reduce environmental impact throughout the life cycle."VI. Conclusion From the laboratory to the production line, potassium fluoride is opening up new growth space with its "one material, multiple uses" characteristics. Driven by the carbon neutrality goal and the scientific and technological revolution, this traditional chemical may write a new chapter in the industry. How to balance technological innovation, market demand and sustainable development will become the core issue of the industry in the next stage. As a mainstay enterprise in the field of fluorine chemistry, Jiayuan should keep up with the times and market development trends, improve product quality and enhance its own competitiveness.(Note: The data in this article are all derived from public industry reports and official corporate information.)
More +
2025-08-15
Magical sodium trifluoromethanesulfinate: small substance, big energy
In the wonderful world of chemistry, there are many substances that have difficult names but play an indispensable role in various fields. Sodium trifluoromethanesulfinate is one of them. Its chemical formula is CF₃SO₂Na, and its CAS number is 2926-29-6. It is also often called sodium trifluoromethanesulfinate. You may be unfamiliar with it, but it has actually penetrated into many aspects of our lives. From the perspective of properties, sodium trifluoromethanesulfinate is quite stable as long as it is used and stored under specified conditions. Its birth is the result of a series of carefully designed chemical reactions. For example, in a specific reactor, raw materials such as water, flake caustic soda, trisodium phosphate, hydrosulfite, acetonitrile and trifluorobromomethane gas react under precisely controlled temperature, pressure and time conditions, and then undergo stratification, extraction, desolventization, drying and other steps to finally obtain this magical substance.Sodium trifluoromethanesulfinate is a star reagent in the field of organic synthesis. It is a powerful assistant for the introduction of trifluoromethyl. Since trifluoromethyl has strong electron-withdrawing properties, lipophilicity and stable C-F bonds, when it is introduced into organic compounds, it can significantly change the acidity, dipole moment, polarity, lipophilicity, and chemical and metabolic stability of the compound. Scientists use it to achieve trifluoromethylation of aromatic hydrocarbons, giving ordinary aromatic hydrocarbon molecules unique properties and laying the foundation for the research and development of new materials; it also participates in difunctionalization reactions, like a magical architect, building organic molecules with diverse structures and expanding the boundaries of organic synthesis; in trifluoromethylthiolation reactions, it also plays a key role, providing the possibility for the synthesis of trifluoromethylthio compounds, and such compounds have great potential in the synthesis of pharmaceuticals, pesticides and functional materials. In the field of battery materials, it is an unsung hero. As a key raw material for the synthesis of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), it indirectly promotes the development of lithium-ion battery technology. LiTFSI has the advantages of high ionic conductivity, good thermal stability and chemical stability. It is an important component of lithium-ion battery electrolyte and is widely used in mobile phones, laptops, electric vehicles and other devices, making our electronic devices last longer and electric vehicles run farther.The pharmaceutical field is also inseparable from sodium trifluoromethanesulfinate. As a pharmaceutical intermediate, it participates in the synthesis of a variety of fluorine-containing drugs. These fluorine-containing drugs have shown unique therapeutic effects in the treatment of cardiovascular diseases, tumors, and nervous system diseases, bringing hope to countless patients. For example, some drug molecules containing trifluoromethyl can bind to biological targets more accurately, improve the efficacy and selectivity of drugs, and reduce damage to normal human cells.With the continuous advancement of science and technology, I believe that sodium trifluoromethanesulfinate will play a greater role in more fields and bring more surprises to our lives. In the future, scientists may be able to tap into its more potential value and make this small chemical shine even brighter.The high-quality sodium trifluoromethanesulfinate (CF₃SO₂Na) produced by Jiayuan has core advantages such as high purity and stability , advanced technology and consistency , compliance and certification , and can provide customers with excellent value . We are committed to providing high-quality products and services, and hope to become your trusted partner! Welcome to consult at any time!
More +
2025-08-15