News Information

Share the latest developments of Jiayuan for you

Location:HomePage > News
Magnesium fluoride coating: multi-field applications and excellent performance
time:2025-01-07 view:337

The main purpose of coating is to reduce reflections and to improve the transmittance of the lens and the quality of the image. In modern lens manufacturing processes, the lens must be coated. Lens coating is based on the principle of optical interference. A layer of substance (usually fluoride) with a thickness of one-quarter wavelength is coated on the surface of the lens to minimize the reflection of the lens to the color light of this wavelength. One layer of film only works on one color light, while multi-layer coating can work on multiple colors of light. Multi-layer coating usually uses different materials to repeatedly coat different thicknesses of film layers on the surface of the lens. Multi-layer coating can greatly improve the transmittance of the lens. For example, the reflectivity of each surface of an uncoated lens is 5%, which is reduced to 2% after single-layer coating, and can be reduced to 0.2% with multi-layer coating. This can greatly reduce the diffuse reflection between the lenses of the lens, thereby improving the contrast and sharpness of the image.

Magnesium fluoride coating

Magnesium fluoride is a kind of coating material. Magnesium fluoride crystal (MgF 2 ) belongs to the tetragonal system, with a melting point of 1255°C, high hardness, good mechanical properties, stable chemical properties, and not easy to deliquesce and corrode. Its main feature in optical properties is that it has a high transmittance in the vacuum ultraviolet band (the transmittance at 170nm is still above 80%). It is widely used in optical fiber communications, military fields and various optical components.

Application of magnesium fluoride coating

The main application of magnesium fluoride coating is coating on the surface of ordinary tempered glass, thereby improving the light transmittance of the tempered glass surface and achieving easy cleaning function, while also extending the life of the glass. AR coated glass can currently be mainly used in solar cell components, solar thermal, construction, automotive glass and other fields.

Preparation of magnesium fluoride coating

图片2

Magnesium fluoride coating uses evaporation method, which is called evaporation coating by heating and evaporating a certain substance to make it deposit on the solid surface. This method was first proposed by Faraday in 1857 and has become one of the commonly used coating technologies in modern times. Evaporating substances such as metals, compounds, etc. are placed in a crucible or hung on a hot wire as an evaporation source, and the substrates to be plated such as metals, ceramics, plastics, etc. are placed in front of the crucible. After the system is evacuated to a high vacuum, the crucible is heated to evaporate the substance in it, and the atoms or molecules of the evaporated substance are deposited on the surface of the substrate in a condensed manner. The film thickness can range from hundreds of angstroms to several microns. The film thickness is determined by the evaporation rate and time of the evaporation source (or by the charge amount), and is related to the distance between the source and the substrate. For large-area coating, a rotating substrate or multiple evaporation sources are often used to ensure the uniformity of the film thickness. The distance from the evaporation source to the substrate should be less than the mean free path of the vapor molecules in the residual gas to prevent chemical reactions caused by collisions between the vapor molecules and the residual gas molecules. The high-quality glass is processed on one or both sides to have a lower reflectance than ordinary glass, and the reflectivity of light is reduced to below 1%. In the visible light range, the single-sided reflectivity of ordinary glass is about 4%, and the total spectral reflectivity is about 8%.

Jiayuan has layout in both the upstream and downstream of the fluorine chemical industry chain, forming a complete fluorine chemical industry chain. At the same time, Jiayuan is also constantly conducting technological research and development and innovation, and has stronger competitiveness and market position in the production, sales and research and development of magnesium fluoride products. If you are interested in magnesium fluoride products or Jiayuan, you can visit our official website for viewing and consultation!


More News Follow Jiayuan for more news

2,3,5-Trifluoropyridine: A rising star in the fields of medicine and materials, leading the innovative application of fluorinated compounds

一、IntroductionRecently, the fluorine-containing fine chemical 2,3,5-trifluoropyridine has become a hot topic in the research and development of medicine, pesticides and high-end materials due to its unique chemical properties and wide application potential. Industry analysis points out that this compound is promoting technological innovation in multiple industries with its high activity, stability and selectivity given by fluorine atoms, and has broad market prospects in the future. 二、Pharmaceutical field: the “key puzzle piece” of innovative drugsIn pharmaceutical research and development, 2,3,5-trifluoropyridine is widely used as a core intermediate to construct small molecule targeted drugs. The introduction of fluorine atoms can significantly improve the metabolic stability and membrane permeability of drug molecules, especially in the fields of anti-cancer, anti-viral and central nervous system disease treatment.In addition, the application of 2,3,5-trifluoropyridine in radiopharmaceutical labeling has also attracted much attention. Its pyridine ring structure can efficiently coordinate with metal isotopes, providing new ideas for the development of integrated drugs for precise diagnosis and treatment of tumors.三、Agrochemical Industry: The “Efficient Engine” of Green PesticidesIn the field of agricultural chemicals, 2,3,5-trifluoropyridine has become the key to the synthesis of new insecticides and fungicides. Fluorine-containing groups can enhance the selectivity of pesticides for target organisms and reduce the risk of environmental residues.四、High-end materials: the "invisible driving force" of the electronics industryIn the field of materials science, derivatives of 2,3,5-trifluoropyridine are breaking through the boundaries of traditional applications. Its fluorinated structure can give liquid crystal materials faster response speed and wider temperature application range, and is used in the manufacture of flexible display panels. In addition, as a fluorinated polymer monomer, this compound exhibits excellent high temperature resistance and corrosion resistance in lithium-ion battery electrolytes and semiconductor packaging materials.五、Market Outlook: Policy and Technology DrivenAccording to the Global Market Insights report, the market size of fluorinated fine chemicals is expected to exceed US$12 billion in 2028, with a compound annual growth rate of 6.5%. As a high value-added product, 2,3,5-trifluoropyridine has particularly active capacity expansion plans in emerging markets such as China and India.六、Conclusion "The innovative application of fluorine-containing compounds is the core track of future fine chemicals." Experts from the Institute of Chemistry of the Chinese Academy of Sciences pointed out, "The multi-field breakthroughs of 2,3,5-trifluoropyridine not only reflect the power of molecular design, but also provide key technical support for industrial upgrading under the goal of carbon neutrality." With the continuous optimization of green synthesis processes, this "fluorinated star" may write an industrialization legend in more cutting-edge fields.If you have any needs or questions, please feel free to contact us! 

More +

2025-08-15

Praseodymium-neodymium fluoride: the key to unlocking a market worth hundreds of billions of yuan; new rare earth materials lead the low-carbon technological revolution

1. IntroductionUnder the wave of global energy transformation and high-tech industry upgrading, a rare earth fluoride called "praseodymium-neodymium fluoride" is quietly becoming the core material for breakthrough technologies in many fields. With the unique chemical empowerment of the fluorine element, praseodymium-neodymium fluoride has shown irreplaceable high value in new energy, high-end optics, quantum communications and other fields, and is known as the "new fulcrum of strategic materials in the 21st century."1. New energy revolution: PrNdF injects a "super strong heart" into permanent magnet motorsIn the field of electric vehicles and wind power generation, praseodymium-neodymium fluoride has become the key to improving motor efficiency by optimizing the high temperature resistance and corrosion resistance of neodymium iron boron permanent magnets. The latest research by the Chinese Academy of Sciences shows that the introduction of fluorine reduces the magnetic energy product loss of magnets by 40% at a high temperature of 200°C, helping Tesla, BYD and other automakers achieve breakthroughs in motor lightweighting and driving range. The industry predicts that the global demand for praseodymium-neodymium fluoride in new energy vehicles will surge by 300% in 2025, and the strategic value of fluorine will catch up with the "rare earth quota".2. Optical cutting edge: Fluoride crystals usher in a new era of laser technologyPraseodymium-neodymium fluoride has been successfully used in the manufacture of mid-infrared laser crystals due to the low phonon energy characteristics of fluorine. TRUMPF of Germany has used this material to develop the world's first kilowatt-class 3μm-band industrial laser, which is 5 times more accurate than traditional CO₂ lasers, greatly promoting the upgrading of precision medicine and semiconductor cutting industries. Experts pointed out that "the lattice stability of fluorine allows the laser life to be extended to 100,000 hours, which is a milestone in the history of optical materials."3. Quantum Track: PrNdF becomes quantum storage "time capsule"The Tsinghua University team recently published their results in Nature Materials. The ultra-narrow spectral linewidth of fluorine ions in praseodymium-neodymium fluoride makes it an ideal carrier for quantum memory, which can extend the quantum state preservation time from microseconds to milliseconds. This breakthrough has cleared key obstacles for the construction of quantum communication networks, and the "electronic control power" of fluorine is highlighted here - each gram of material is worth more than 10,000 yuan, but it may leverage a trillion-level quantum industry.4. Resource Game: Fluorine + Rare Earth Build China's "Dual Chain" MoatCurrently, 90% of the world's high-purity praseodymium-neodymium fluoride production capacity is concentrated in China, and its preparation relies on the deep integration of rare earth separation technology and the fluorine chemical industry chain. The Ministry of Industry and Information Technology's "14th Five-Year Plan" new materials plan clearly lists fluorine-based rare earth compounds as "strategic resource dual-control products." Industry insiders analyzed that the irreplaceable nature of fluorine and the rare earth supply pattern may give rise to a new generation of material pricing power battles similar to the "lithium-cobalt dispute."2. Future Prospects As countries accelerate the layout of cutting-edge fields such as hydrogen energy storage and transportation, 6G terahertz communications, the application boundaries of praseodymium-neodymium fluoride continue to expand. The European Union has launched a special plan called "Fluorine Rare Earth 2030" and plans to invest 2 billion euros to break through the recycling technology of praseodymium-neodymium fluoride. In this scientific and technological competition, whoever can master the collaborative innovation code of "fluorine" and rare earths may win the right to win the next generation of high-end manufacturing.3. ConclusionFrom the laboratory to the industrial end, praseodymium-neodymium fluoride is leveraging "fluorine" to pry open a cross-domain material revolution. Behind it is not only the victory of chemical elements, but also reveals a hard truth: in the era of carbon neutrality and digital civilization, the strategic value ranking of the periodic table is being redefined. Jiayuan keeps up with market development trends, conducts research and development projects, diversifies the company's product areas, and enhances Jiayuan's brand image. 

More +

2025-08-15

Potassium fluoride application areas continue to expand, new energy and electronics industries become new growth engines

1. IntroductionRecently, the global chemical and materials industry has been paying more and more attention to potassium fluoride (KF). As an important inorganic fluoride, potassium fluoride has shown diversified application potential in the fields of medicine, new energy, electronic manufacturing and environmental protection technology due to its unique chemical properties. Driven by both technological innovation and market demand, potassium fluoride is extending from traditional fields to high value-added industries, becoming one of the key materials to promote industry upgrading.2. Potassium fluoride has multiple application scenarios1. Pharmaceutical field: the "invisible promoter" of efficient catalysts    Potassium fluoride, as an efficient fluorinating agent in organic synthesis, is widely used in the production of anti-tumor drugs, antibiotics and cardiovascular drugs. For example, its role in the molecular structure modification of fluorine-containing drugs is irreplaceable. A domestic pharmaceutical company recently announced that by optimizing the potassium fluoride catalytic process, it has successfully increased the synthesis efficiency of a certain targeted drug by 30%, significantly reducing production costs. 2. New energy track: New breakthrough in lithium battery electrolyte additives    As the global energy transition accelerates, potassium fluoride is emerging in the field of lithium-ion batteries. Studies have shown that electrolytes containing potassium fluoride can effectively improve the high-temperature stability and cycle life of batteries. A leading Japanese battery company has launched a related pilot project and is expected to achieve commercial application in 2025. 3. Electronic materials: core raw materials for precision etching and coating    In semiconductor and photovoltaic panel manufacturing, potassium fluoride is used in glass etching and thin film deposition processes. The demand for its high-purity products (≥99.9%) has surged with the expansion of 5G and AI chip production capacity. According to industry reports, the global electronic-grade potassium fluoride market size will increase by 18% year-on-year in 2023, with Chinese manufacturers accounting for more than 40% of the market share. 4. Environmental protection technology: the "green guard" of industrial wastewater treatmentPotassium fluoride has performed well in the treatment of heavy metal-containing wastewater. The new potassium fluoride composite precipitant developed by a European environmental protection company can increase the removal rate of pollutants such as lead and cadmium to 99.5%, and the treatment cost is 25% lower than that of traditional solutions. It has now obtained the EU Ecolabel certification.3. Market demand surges, with Asia-Pacific leading the world According to Grand View Research data, the global potassium fluoride market will reach US$870 million in 2023 and is expected to exceed US$1.4 billion in 2030, with a compound annual growth rate of 6.5%. Among them, the Asia-Pacific region benefits from the cluster effect of the new energy industry chain and the expansion of the electronics manufacturing industry, accounting for more than 55% of the demand. China, South Korea and India have become the main growth poles, and many international chemical giants have announced the expansion of high-purity potassium fluoride production lines in China.4. Give equal weight to technological innovation and safety regulationsDespite the promising prospects, the corrosiveness and environmental risks of potassium fluoride still need to be vigilant. Industry experts emphasize that companies need to upgrade their production safety processes simultaneously. For example, the "microencapsulated potassium fluoride" technology developed by a German company can significantly reduce dust hazards during transportation and use, and has now entered the patent layout stage. In addition, ISO will release a new version of the international standard for fluoride treatment in 2024 to further regulate industry operations.5. Expert opinions"The cross-border application of potassium fluoride confirms the transformation and upgrading path of basic chemicals," said the Secretary-General of the China Fluorine and Silicone Organic Materials Industry Association. "Future industry competition will focus on high-end and green solutions. Enterprises need to increase collaborative innovation with universities and research institutions, while building a circular economy model to reduce environmental impact throughout the life cycle."VI. Conclusion From the laboratory to the production line, potassium fluoride is opening up new growth space with its "one material, multiple uses" characteristics. Driven by the carbon neutrality goal and the scientific and technological revolution, this traditional chemical may write a new chapter in the industry. How to balance technological innovation, market demand and sustainable development will become the core issue of the industry in the next stage. As a mainstay enterprise in the field of fluorine chemistry, Jiayuan should keep up with the times and market development trends, improve product quality and enhance its own competitiveness.(Note: The data in this article are all derived from public industry reports and official corporate information.)

More +

2025-08-15

Magical sodium trifluoromethanesulfinate: small substance, big energy

In the wonderful world of chemistry, there are many substances that have difficult names but play an indispensable role in various fields. Sodium trifluoromethanesulfinate is one of them. Its chemical formula is CF₃SO₂Na, and its CAS number is 2926-29-6. It is also often called sodium trifluoromethanesulfinate. You may be unfamiliar with it, but it has actually penetrated into many aspects of our lives. From the perspective of properties, sodium trifluoromethanesulfinate is quite stable as long as it is used and stored under specified conditions. Its birth is the result of a series of carefully designed chemical reactions. For example, in a specific reactor, raw materials such as water, flake caustic soda, trisodium phosphate, hydrosulfite, acetonitrile and trifluorobromomethane gas react under precisely controlled temperature, pressure and time conditions, and then undergo stratification, extraction, desolventization, drying and other steps to finally obtain this magical substance.Sodium trifluoromethanesulfinate is a star reagent in the field of organic synthesis. It is a powerful assistant for the introduction of trifluoromethyl. Since trifluoromethyl has strong electron-withdrawing properties, lipophilicity and stable C-F bonds, when it is introduced into organic compounds, it can significantly change the acidity, dipole moment, polarity, lipophilicity, and chemical and metabolic stability of the compound. Scientists use it to achieve trifluoromethylation of aromatic hydrocarbons, giving ordinary aromatic hydrocarbon molecules unique properties and laying the foundation for the research and development of new materials; it also participates in difunctionalization reactions, like a magical architect, building organic molecules with diverse structures and expanding the boundaries of organic synthesis; in trifluoromethylthiolation reactions, it also plays a key role, providing the possibility for the synthesis of trifluoromethylthio compounds, and such compounds have great potential in the synthesis of pharmaceuticals, pesticides and functional materials. In the field of battery materials, it is an unsung hero. As a key raw material for the synthesis of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), it indirectly promotes the development of lithium-ion battery technology. LiTFSI has the advantages of high ionic conductivity, good thermal stability and chemical stability. It is an important component of lithium-ion battery electrolyte and is widely used in mobile phones, laptops, electric vehicles and other devices, making our electronic devices last longer and electric vehicles run farther.The pharmaceutical field is also inseparable from sodium trifluoromethanesulfinate. As a pharmaceutical intermediate, it participates in the synthesis of a variety of fluorine-containing drugs. These fluorine-containing drugs have shown unique therapeutic effects in the treatment of cardiovascular diseases, tumors, and nervous system diseases, bringing hope to countless patients. For example, some drug molecules containing trifluoromethyl can bind to biological targets more accurately, improve the efficacy and selectivity of drugs, and reduce damage to normal human cells.With the continuous advancement of science and technology, I believe that sodium trifluoromethanesulfinate will play a greater role in more fields and bring more surprises to our lives. In the future, scientists may be able to tap into its more potential value and make this small chemical shine even brighter.The high-quality sodium trifluoromethanesulfinate (CF₃SO₂Na) produced by Jiayuan has core advantages such as high purity and stability , advanced technology and consistency , compliance and certification , and can provide customers with excellent value . We are committed to providing high-quality products and services, and hope to become your trusted partner! Welcome to consult at any time!

More +

2025-08-15